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Abstract. New affinely minimal surfaces are constructed with the use of Backlund’s theorem. 
Corresponding affine Backlund transformation is studied in some detail. 

1. Introduction 

In the second half of the nineteenth century Bianchi and Backlund developed the 
technique of generating new surfaces of constant negative curvature in E 3  by the 
solution of a completely integrable system of first-order partial differential equations. 
Because there is an ‘almost’ one-to-one correspondence between solutions of the 
sine-Gordon equation x,,, = sin x and the (local) surfaces of constant Gaussian cur- 
vature [ l], the Bianchi-Backlund construction furnishes a way to generate new solutions 
of the sine-Gordon equation from a given one. This method, known as the Backlund 
transformation, has been recently used in the study of many non-linear evolution 
equations [ 2 ] .  

Chern and Terng’s affine analogue of classical Backlund theorem [3] allows us to 
follow the Bianchi-Backlund idea in the case of affine minimal surfaces in the real 
affine space A3. In the first part of this paper we present the analytic form of affine 
Backlund transformation (ABT) and discuss some of its properties. Then we give a 
few examples of constructing new families of solutions of the system (1) as well as 
new affine minimal surfaces. 

Equations ( l ) ,  being the integrability conditions of some linear problem and 
possessing a Backlund transformation [4], seems to be a candidate for complete 
solvability. But the linear problem as well as Backlund transformation is parameter 
independent (parameters appearing in [4] can be removed by gauge transformation). 
Lately D Levi (private communication) showed that Lie-Backlund symmetries of the 
system (1) are inessential generalisations of the transformation (11) and (12) and 
cannot be used to produce a parameter dependent linear problem. Thus the question 
of complete solvability of (1) remains open. 
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2. Affine Backlund transformation 

The local and implicit description of the so-called hyperbolic affine surfaces in A 3  is 
given in terms of the affine metric II = F du du and the Fubini-Pick form P = 
f A ( d ~ ) ~ + ; B ( d u ) ~ ,  where F > 0, A ,  B are some real functions ofthe asymptotic coordin- 
ates U and U [ 5 ] .  F, A and B obey the affine analogues of the Gauss-Mainardi-Codazzi 
equations. The condition of affine minimality FF,,, - F,,F,. + A B  = 0 and the GMC 

equations lead to the system of three non-linear partial differential equations [4] 

FF,,, - F,,F,, + A B  = 0 

AB, ,  - F,,A,, + FA,., = 0 (1 )  

A,,B - F,,B,, + FB,,, = 0 

(the comma denotes differentiation), From the existence and uniqueness theorem on 
affine surfaces [ 5 ] ,  F > 0, A and B satisfying (1) define the local affine minimal surface 
up to the unimodular affine transformation. 

Let r (u ,  U )  be hyperbolic affine minimal surface parametrised by its asymptotic 
curves and let F, A and B be affine invariants of this surface. We may formulate an 
affine analogue of Backlund’s theorem [3] as follows. 

If s( U, U )  > 0, p (  U, U )  and q( U, U )  satisfy the system of first-order partial differential 
equations 

p,u = -1 - s -p(ln F ) , ,  P,. = q ( B / F )  

49, = P ( A / F )  4,. = -1 +s -q(ln F ) , .  (2) 

s,, = P ( A , . / F )  s,. = - q ( B , , / F )  

r*(u,  U)= 4% U ) + P ( U ,  u )r , , (u ,  u ) + q ( u ,  u)r , . (u,  0) 

then the surface 

(3) 

is affine minimal too. (U, U )  are asymptotic coordinates on r* (u ,  U). 
Affine invariants of the new surface r*(u,  U )  are 

F* = sF A* = - S A  + qA,, B* = -sB -pB,, .  (4) 

System (2) is completely integrable in the Frobenius sense. 
All the above statements can be checked directly without referring to [3]. 
The ABT on the level of the surfaces gives us the method of constructing new affine 

minimal surfaces from the known ones. One only needs to solve the system (2) and 
apply the formula (3). However, we have a Backlund transformation (BT) on the level 
of invariants of the surface (or non-linear equations) too. It is a perfect example of 
the Backlund transformation in the sense of soliton theory: s , p ,  q are the so-called 
pseudopotentials, they satisfy an overdetermined system (2), the compatibility condi- 
tions of which are equivalent to the original system (1). Given a solution of (1) we 
can put it into (2) ,  solve for s, p ,  q and by applying (4) we can construct a solution of 
(1). Hence, on picking out initial values s ( u o ,  uo) = so, p ( u o ,  uo) = p o ,  q ( u o ,  uo) = qo 
we define a unique local solution of (2) and that is why the formula 

( F ,  A, B )  - BT( F, A ,  B )  = ( F * ,  A*, B*)  ( 5 )  
gives us a three-parameter family of solutions of (1). (The fourth parameter k appearing 
in [4] turns out not to be a true one.) Because of the one-to-one correspondence 
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between solutions of (1) (with F > 0) and affine minimal surfaces (up to unimodular 
affine transformation) in order to obtain some information about ABT we may investigate 
the BT ( 5 )  on the level of invariants of the surface as well. Bearing in mind these 
geometric applications, we will consider a proper BT (i.e. with s > 0) only. 

Let us start with two simple observations. 
(i)  If ( F * ,  A*, B*) is an image of ( F ,  A, B )  under BT with pseudopotentials s, p ,  q 

then ( F ,  A, B )  is an image of ( F * ,  A*, B*) under BT with pseudopotentials s* = l/s, 
p *  = P I S ,  q* = - q / s .  That means that s*, p * ,  q* give the inverse BT: 

s. P. 4 S * , P * . 9 *  

( F ,  A, B )  - ( F * ,  A*, B * )  - ( F ,  A, B) .  

(ii) The following diagram, 

where the full arrows represent BT with indicated pseudopotentials, can be closed. In 
point of fact, if we take 

s = (S*S*)/F p = p *  + sp - s* j i  q = q* - sq + s* lj 
long but straightforward calculations show that they define BT 

5.P.  4 ( E  A, B )  - ( F * ,  A*, B*). 

This feature of permutability of BT ( 5 )  allows us to prove the theorem on the range 
of consecutive applications of BT. Let us denote by ranBT(F, A, B )  the range of BT 

applied to ( F ,  A, B ) ,  i.e. the set of all ( F * ,  A*, B*) which can be obtained from ( F ,  A, B )  
via BT with all possible s, p ,  q. 

Theorem. ran( BT 0 BT 0 BT( F, A, B ) )  = ranBT( F, A, B) .  

Roo$ Let us start with some F satisfying (1) (we shall omit A and B for convenience), 
then construct BT(F). The permutability of ( 5 )  (see (ii) above) assures us that 
ransT( k )  = rane-r( P )  for every pair F, F E ransr( F ) .  Because F E ran( BT 0 BT( F ) )  we 
obtain the following picture 

ran IBTOBTIFII ranw 

Now permutability of ( 5 )  applied to fi gives us rans-r(F*) = r anm(F)  for every 
F" E ranBT( i.) = ran( BT 0 BT( F ) ) .  So we obtain the desired result. 
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The theorem and its proof show us that given a solution F, A, B of (1) one can construct 
two three-parameter families of solution of ( 1 ) :  raner( F, A, B )  and ran( BT 0 BT( F, A, B ) .  
Consecutive applications of BT (5) do not give us new solutions: BT transforms 
ranBT( F, A, B )  onto ran( BT 0 BT( F, A, B ) )  and conversely. Thus we can see that, as far 
as the range of ABT is concerned, it is drastically different from the classical Backlund 
transformation for pseudospheres. The latter possesses some external parameter (it is 
a parameter dependent Backlund transformation) and its consecutive applications 
allow us to construct more and more new pseudospherical surfaces (or solutions of 
the sine-Gordon equation). 

Let us make some observations concerning the mutual position of ranBT(F, A, B )  
and ran(BT0 BT(F,  A, B ) ) .  Though they can intersect in general, in a generic position 
ranBT( F )  n ran( BT 0 BT( F ) )  = 0. This results from 

(i) ( F ,  A, B )  E ranBT(F) n ran(BT 0 B T ( F ) ) J A  = 0 

Now we present another formulation of BT (5) which is sometimes more convenient 
than the original one. When A,,B,, # 0 formulae (2) and (4) are equivalent to the 
system of first-order linear partial differential equations for unknowns F*,  A* and B*:  

(a) AT,+A,,=O 

(b) AT.A,,F-A*A,,,F+(A,,A,. -AA , , , )F*=O 

(ii) (F, A, B) € ranBT( F, A =o,  B ) J A = O .  

(c) BTU - B,, = O  

(d)  

(e) 

( f )  

Pseudopotentials s, p ,  q are given by 

BT,B,,F - B*B,,,F + (B,,B,, - BB,,,)F* = 0 

FT,B,, - F*B,,, + B*A, ,  = O  

F T J , ,  - F*A,,, + A*B,, = 0. 

F* FB*+F*B FA* + F * A  
F ( 7 )  

FA, L' 
4 =  FB, U P = -  s=- 

When A,,A,, -AA,,, f 0 and B,,B,, - BB,,, # 0 we can solve some equations from the 
system ( 6 )  and reduce construction of BT ( 5 )  to the process of solution of one 
'partial-ordinary' differential equation. 

Corollary. When A,,A,, -AA,,, f 0 and B,,B,, - BB,,, # 0,  system ( 6 )  is equivalent to 
the differential equation for two functions of one variable g(  U), h(  U )  

with the ansatz 

A*(  U, U )  = -A( U ,  U )  + g (  U )  B*(u ,  U )  = B ( u ,  U)+ h ( u )  

In the above formulae g '=  dg/du, h i =  dhldu. 
Boo$ From ( 6 a )  and ( 6 c )  we obtain A * ( u ,  U )  = - A ( u ,  U )  + g ( u )  and B*(u ,  U )  = 
B ( u ,  u ) + h ( u ) .  
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( 6 6 )  is equivalent to 

Inserting this into ( 6 f )  we obtain the identity. Analogously ( 6 d )  is equivalent to 

which converts ( 6 e )  into the identity. 
Equation (8) guarantees that (*) and (**) give the same F*. 
For applications it may be useful to know explicit formulae for two consecutive 

ABT. ABT applied to the surface r*(u,  U )  given by (3) leads to 

i =  r * + p * r T ,  + q * r T ,  

= r + ( p - s p * ) r , , + ( q + s q * ) r , , + ( p q * + q p * ) r , , , .  (9 )  

From (7)  we obtain 

p - ~ p *  = ( FB,, ) - I ( (  i. - F )  B* + (S - B )  F * )  

q + sq*  = (FA,")- ' ( (  F - F)A*  + ( A  - A ) F * )  (10) 

p q * + q p *  = (FA,,B,,)-'(F(AB*-SA*)+F*(AB-~A)+F(A*B-B*A)). 
Before proceeding to examples of new affine minimal surfaces obtained through 

ABT let us briefly describe symmetries of the system (1). It is a system of homogeneous 
equations. Thus it has a one-parameter symmetry transformation 

k 

( F , A , B ) - ( F , A , B ) = ( k F , k A , k B ) .  (11) 

This transformation commutes with BT (5). 
System ( 1) also possesses the two-parameter symmetry transformation 

m , n  - - - 
( F , A , B ) - ( F , A ,  B ) =  

This transformation commutes with BT provided we simultaneously transform 
pseudopotentials: s H s, p - mp, q H nq. 

Let us sum up  now. Given affine minimal surface r ( u ,  U )  parametrised by asymptotic 
coordinates we can construct explicitly two three-parameter families of affine minimal 
surfaces provided we are able to solve the system (2), ( 6 )  or (8). Taking into account 
that symmetry transformation (1 1) corresponds to r (  u, U )  H k2'3r( U, U )  and (12) is 
simply the change of variables (on the surface level) we can use (1 1) to get new surfaces 
too. 

3. Examples 

We present here a few examples of ABT in action. We construct two families raneT( ), 
ran(BT 0 BT( - )) of affine minimal surfaces starting with some classical minimal surfaces: 
Enneper surface and Thomsen surfaces as well as the 'travelling wave' surface found 
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by ourselves. If F, A, B describe the original surface then we use F*, A*, B* for 
surfaces belonging to raner(F, A, B )  and F, 8, B for surfaces from 
ran(BT 0 BT( F, A, B ) ) .  a, b, c, d, e, f are real constants. 

I :  AB=O+A*B*=O. 

These are affine minimal surfaces with vanishing affine curvature k = 0 (affinely flat). 

11: 

These are affine minimal surfaces with vanishing total affine curvature K = O  (total 
affinely flat). 

111: 

These are singular affine spheres. In this case BT satisfies N* = -( l/s)N, s = constant, 
where N = (r , , , /  F ) ,  N* = ( r * , , , / F * )  are affine normals [ 5 ] .  Conversely, if N* = 
-(l/s)N, s = constant # 1, then both r (u ,  U )  and r*(u, U )  are singular affine spheres. 

IV: 

This is the case when BT in the form (6) is very efficient. 

A,,B,, = OJAT,BT,  = 0. 

A,, = 0 = B,, * A t ,  = 0 = BTU. 

A, ,  = 0 = B,, and A,,B,, # O J A T ,  = 0 = BT,. 

3.1. Generalised Enneper surfaces 

The Enneper surface is given (in asymptotic coordinates) by [5] 

x = 3 u  - 3 U ’ U s -  u3 

y = 3 U - 3 M U 2  + u3 

Its affine invariants are 

F = k ( l +  u2+ U’) A = 2kv B = 2 k u  

with k = 3J6. 
BT applied to (14) gives 

F* = k [ -  a ( 2 ~  + b)* +:( - 2 ~  + U)’ + C ]  

A* = k ( - 2 ~  + U )  B* = k ( 2 u  + b ) .  

BT applied to (15) gives 

= k[a(2u + e)’+ a(2u + d ) ’ + f l  

A= k ( 2 u +  d )  B = k ( 2 u  + e ) .  

Applying BT once more we obtain (15) again. It is the illustration of the theorem. 
Substituting e = d = 0, f= 1 into (16) one obtains (14). Our general scheme allows us 
to construct explicitly every surface belonging to the families (15) and (16) for we 
know one of them-the Enneper surface (13). 
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3.2. Generalised Thomsen surfaces [ 51 

Minimal Thomsen surfaces are given (in asymptotic coordinates) by 

x = -( 1 - t 2 ) -” ’ (  tu + cos u sinh U )  

y = (1 - t 2 ) - ’ / ’ (  u + t sin U cosh U )  

z = sin U sinh U. 

Corresponding affine invariants are 

F = (1 - t2)-’/2(cosh U + t C O S  U )  

A = (1 - t 2 ) - ” 2  sinh U B = - t ( l -  t 2 ) - ’ l 2  sin U 

where t is a real constant. 

F* = (1 - t 2 ) - ’ / * [  ( c  cos U - b sin U - 1 )  cosh U + t (  1 - a sinh U )  cos U ]  

A* = -( 1 - t2)-’l2(sinh u + a )  

BT applied to (19)  leads to 

F = [( f cos u + e sin U + 1 )  cosh U + t (  1 - d sinh U )  cos U]( 1 - t 2 ) - ’ / *  

A = (1 - t2)-’’*(sinh u + d )  

Substituting d = e = f = 0 into (20) we obtain minimal Thomsen surfaces (18). 

(19) and (20). 

BT applied to (18) gives 

(19) 
B*=- t ( l - t2 ) -1 /2 ( s in  u + b ) .  

(20) B = - t ( l -  t2)-’l2(sin U + e ) .  

Again, we are able to construct explicitly every surface belonging to the families 

V: A,,A,” -AA,, ,  + 0 and B,,B,, - BB,,, # 0. 

In this case the representation of BT given in the corollary (formula (8)) is most efficient. 
As an example we shall consider a travelling wave solution of (1) 

F = k ( u  + u ) ~  A = 2 k ( u +  u ) ~  B = 2k( u + u ) ~ .  (21) 
BT applied to (21) gives 

F* = k(  U + U)[-U’ - 3u’u + 3uu2+ u3 - auu +$b( U - U )  + c]  

A* = -2k( U + u ) ~  + k(4u3 + au2 + bu + c) (22) 
B* = 2 k ( u  + u ) ~ +  k(-4u3+ au2-  bu+ c ) .  

BT applied to (22) leads to 

F = k ( u  + u ) [ ( u  + U)’+ duu - i e ( u  - U )  -fl 
A= 2k(u + ~ ) ~ + k ( d u ’ +  eu + f) (23) 
8 = 2k(u + U)’+ k ( d u 2 -  e v + f ) .  

BT applied to (23) gives, according to the theorem, the family (22) again. Substituting 
d = e = f = 0 into (23) we recover the travelling wave solution (21) .  

We can construct explicitly every surface belonging to families (22) and (23) because 
we know one special example of such a surface: 

x = 5 ( u + u ) 3  y = 3(u + U ) 3 ( U  - U )  z = 2(u + u)’(u2--3uu + U ’ )  

corresponding to k = 30 in (21). 
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